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Hamiltonian Formalism of the Landau–Lifschitz
Equation for a Spin Chain with an Easy Plane

Shi Lina,1,3 He Jinchun,2 Cai Hao,1 Li Chengfang,1

and Huang Nianning1

With a suitable gauge transformation, the Hamiltonian formalism of the Landau–
Lifschitz equation for a spin chain with an easy plane is established by standard proce-
dure. Action-angle variables are obtained and the canonical equation is given.
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1. INTRODUCTION

The Landau–Lifschitz (L–L) equation (Landau and Lifschitz, 1935) for a
spin chain is a typical complete integrable equation in 1 + 1 dimension with its
physical application. The L–L equation for an isotropic spin chain, the simplest
case, was solved by an inverse scattering transform (IST) with a little modification
(Takhtajan, 1977; Laksmanan, 1977). As known, in the inverse transform equation,
a redundant factor k−1 needs to be introduced to ensure vanishing contribution of
integral along the big arc in k-plane as the spectral parameter |k| → ∞. A series of
conserved quantities is obtained through expanding a(k) by k−1 (Fogedby, 1980).
The zeroth-order term in this series does not vanish unlike that in the well-known
non-linear Schrödinger equation (NLSE). In addition, the Hamiltonian can not be
derived by the first-order term. This difficulty was overcome in consideration of the
gauge equivalence between the NLSE and the L–L equation for an isotropic spin
chain (Zakharov and Takhtajan, 1979; Faddeev and Takhtajan, 1987). By using
the reverse one of the gauge transformation, one can obtain the conservation laws
of the L–L equation for an isotropic spin chain from those of the NLSE.

For the L–L equation for a spin chain with axial symmetry (Tjio and Wright.
1977), in order to derive the right conservation laws and obtain a valuable guide to
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construct inverse scattering transform, one tried to look for the gauge equivalent
equation but failed. In 1995, the L–L equation for a spin chain with an easy plane
was solved by Darboux matrix method and avoid problem (Nian-Ning Huang et al.,
1995). It means that it is necessary to analyze the essence of the gauge equivalence
of the L–L equation for the isotropic spin chain with the NLSE. We find the essence
is: the spinning vector (in the leading power of k in the first one of Lax pair of
the L–L equation for an isotropic spin chain) is turned to one of three-axis in spin
space by a gauge transformation. Since the spinning vector of L–L equation for a
spin chain with an easy plane is the same as that of L–L equation for an isotropic
spin chain, the same procedure can be applied to the spin chain with an easy plane.

In this paper, we give the explicit expression of the gauge transformation,
derive the right conservation laws and construct the Hamiltonian formalism of the
L–L equation for a spin chain with an easy plane. The coordinate and spectral
parameter representations of the Hamiltonian are deduced. The spectral parameter
expressions of a series of conserved quantities is then derived and, by introducing
a suitable gauge transformation, we find the coordinate expressions, one of them
is just the required Hamiltonian. And finally, the discrete spectrum part of the
Hamiltonian formalism is constructed.

2. LIE–POISSON BRACKET AND THE COORDINATE
REPRESENTATION OF THE HAMILOTONIAN

The L–L equation for a spin chain with an easy plane is

�St = �S × �Sxx + �S × J �S (1)

where | �S| = 1, and J = diag(J1, J2, J3) characterizing the magnetic properties of
the spin chain. For the spin chain, �S satisfies Lie–Poisson bracket

{Sa(x), Sb(y)} = −εabc Sc(x)δ(x − y) (2)

where εabc is totally skew-symmetric rank 3 tensor, a, b, c = 1, 2, 3 and having
two indices means we are summing over this index. Then the Lie–Poisson bracket
of the Q and R as the function of Sa(x) can be written.

In terms of Lie–Poisson bracket, the Hamiltonian equation of L–L equation
is

�Sat = { �Sa , H} (3)

where H is determined uniquely by

H =
∫

dxH(x), H(x) = 1

2
Sbx Sbx − 1

2
Jb Sb Sb (4)

For a spin chain with an easy plane, J2 < J1 = J3, one can set J2 = 0 and obtain
J1 = J3 = J > 0.
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3. THE LIE–POISSON BRACKETS BETWEEN ELEMENTS
OF MONODROMY MATRIX

For a spin chain with an easy plane, the pair of compatibility conditions can
be written as

L = −i
∑

a

ua(ζ )Saσa , (5)

and

M = −i
∑
a,b,c

ua(ζ )Sb Scxσaεabc + i
∑
a,b,c

ub(ζ )uc(ζ )Saσa|εabc|, (6)

where u1 = u3 = κ , u2 = λ and λ2 − κ2 = ρ2, here ρ2 is a constant. Introduce
affine parameter ζ so that λ = 1

2 (ζ + ρ2ζ−1), κ = 1
2 (ζ − ρ2ζ−1) are single-valued

functions of ζ .
One can assume that �S → (0, 0, 1) as |x | → ∞, hence the first compatibility

equation

∂x F(x , ζ ) = L(x , ζ )F(x , ζ ) (7)

has an asymptotic solution, the so-called free Jost solution, E(x , ζ ) = e−iκxσ3 .
Then the Jost solutions are defined by

�(x , ζ ) = (ψ̃(x , ζ ), ψ(x , ζ )) → e−iκxσ3 , as x → ∞
(8)

(x , ζ ) = (φ(x , ζ ), φ̃(x , ζ )) → e−iκxσ3 , as x → −∞
Introducing a monodromy matrix T (ζ ) by

(x , ζ ) = �(x , ζ )T (ζ ), T (ζ ) =
(

a(ζ ) −b̃(ζ )

b(ζ ) ã(ζ )

)
(9)

we can have

a(ζ ) = ψ(x , ζ )T (−iσ2)φ(x , ζ ) (10)

and

b(ζ ′) = ψ̃(x , ζ ′)T (iσ2)φ(x , ζ ′). (11)

Following a variation procedure, we obtain

δa(ζ )

δSa(z)
= −uaψ(z, ζ )T σ2σaφ(z, ζ ) (12)

and

δb(ζ ′)
δSb(z)

= u′
aψ̃(z, ζ ′)T σ2σbφ(z, ζ ). (13)



1934 Lina, Jinchun, Hao, Chengfang, and Nianning

Hence, (12) and (13) lead to

{a(ζ ), b(ζ ′)} = εabc

∫
dz uau′

bψ(z, ζ )T σ2σaφ(z, ζ ′)ψ̃(z, ζ ′)T σ2σbφ(z, ζ )Sc(z)

(14)

This integral will be obtained if the integrand is a complete differential. Notice
the Jost solutions, after some manipulation we find that the integrand of the right
hand of (14) is

{a(ζ ), b(ζ ′)} = 1

2

κλ′ + κ ′λ
κ − κ ′ (ψ(z, ζ )T σ2ψ̃(z, ζ ′)φ(z, ζ ′)T σ2φ(z, ζ ))

∣∣z=L

z=−L

+ 1

2

κλ′ − κ ′λ
κ + κ ′ (ψ(z, ζ )T ψ̃(z, ζ ′)φ(z, ζ ′)T φ(z, ζ ))

∣∣z=L

z=−L
. (15)

From (8), one proves that

{a(ζ ), b(ζ ′)} = − κλ′ + κ ′λ
1 + ρ2ζ−1ζ ′−1

1

ζ − ζ ′ − i0
a(ζ )b(ζ ′)

+ κλ′ − κ ′λ
1 + ζ−1ζ ′

1

ζ − ρ2ζ ′−1 + i0
a(ζ )b(ζ ′) (16)

Similarly we obtain

{ã(ζ ), b(ζ ′)} = − κλ′ + κ ′λ
1 + ρ2ζ−1ζ ′−1

1

ζ − ζ ′ − i0
ã(ζ )b(ζ ′)

+ κλ′ − κ ′λ
1 + ζ−1ζ ′

1

ζ − ρ2ζ ′−1 + i0
ã(ζ )b(ζ ′) (17)

Consequently, (16) and (17) yield

{|a(ζ )|2, b(ζ ′)} = κ ′ζ ′i2πδ(ζ − ζ ′)|a(ζ )|2b(ζ ′)

− κ ′ρ2ζ ′−1i2πδ(ζ − ρ2ζ ′−1)|a(ζ )|2(ζ ′) (18)

4. THE CONTINUOUS PART OF SPECTRAL REPRESENTATION
OF HAMILTONIAN

The Hamiltonian of the continuous spectrum will be discussed. From the
inverse scattering method, we see that a(ζ ), ã(ζ ) are independent of the time
variable t and that b(ζ ), b̃(ζ ) depend on the time variables t in the following
manner. When |x | → ∞, M → M0 = i2κλσ3, we have

b(t , ζ ) = b(0, ζ )e−i4κλt , a(t , ζ ) = a(0, ζ ) (19)
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Therefore, the action variables P(ζ ) must be a function of a(ζ ) and ã(ζ ). Assume
that the action variable is

P(ζ ) = F(|a(ζ )|2) (20)

where F is a function to be determined, the angle variable Q(ζ ) is

Q(ζ ) = argb(ζ ) = 1

i
ln b(ζ ), Q(ζ, t) = Q(ζ, 0) − 4κλt (21)

Their Lie–Poisson bracket must be

{P(ζ ), Q(ζ ′)} = −δ(ζ − ζ ′) (22)

The form of the function F can be determined from (22).
For the spin chain with an easy plane, (5) leads to L(ζ ) = σ2L(ρ2ζ−1)σ2 and

we find

a(ζ ) = ã(ρ2ζ−1) (23)

Thus only the case of |ζ | > p needs to be treated. Now only the first term of (18)
is needed, so that

{F(|a(ζ )|2), ln b(ζ ′)} = F ′(|a(ζ )|2)|a(ζ )|2π2κζδ(ζ − ζ ′) (24)

With the aid of (21) and (22), integrating (24) yields the form of the function F as
follows

P(ζ ) = F(|a(ζ )|2) = − 1

π2κζ
ln |a(ζ )|2 (25)

So, by using (23), the continuous spectrum of the Hamiltonian can be uniquely
expressed as

H = −
∫

|ζ |> p
dζ4κλP(ζ ) = 1

π

∫
|ζ |> p

dζ (1 + ρ2ζ−2) ln |a(ζ )|2

= 1

π

∫ +∞

−∞
dζ ln |a(ζ )|2 (26)

5. ASYMPTOTIC BEHAVIOR OF THE JOST SOLUTIONS

For the two components of Jost solution, the first Lax equation (7) can be
expressed as

v1x = L11v1 − L12v2, v2x = L21v1 + L22v2 (27)

where v is ψ(x , ζ ) and L in (5). Eliminating v1, we have

(v2x − L22v2)x −
(

1

(L21)x
+ L11

)
(v2x − L22v2) − L12L21v2 = 0 (28)
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Set v2 = ei 1
2 ζ x+g and introduce

gx ≡ µ = µ0 + µ1(iζ )−1 + · · · (29)

as |ζ | → ∞. Considering the asymptotic expansion, v2 and substituting for L , gx

by (5), (29), respectively in (28), µ0 �= 0 is derived. Hence we conclude that, as in
the isotropic case, it is impossible to obtain right conserved quantities in the forms
of integral with respect to x .

6. A GAUGE TRANSFORMATION

Since a gauge transformation has no effect on the monodromy matrix, we
choose a gauge B which turns the spin in the leading power of spectral parameter
in the first one of Lax pair into one of three-axis in spin space, namely

BSaσa B−1 = σ3. (30)

Under B, L is transformed to

L ′ = BLB−1 + Bx B−1 (31)

Taking polar coordinates (1, θ , ϕ) in spin space we choose

B = ei 1
2 σ2 f A, A(x , t) = ei 1

2 σ2θei 1
2 σ3ϕ. (32)

Thus

ALA−1 = −i
1

2
ζσ3 − i

1

2
ρ2ζ−1

( − S2
1 + S2

2 − S2
3

)
σ3 + ζ−1W1 (33)

where

W1 = −ρ2 sin θ sin ϕ(iσ2 cos ϕ + iσ1 sin ϕ cos θ ) (34)

the element has zeros on the diagonal. But Ax A−1 is

Ax A−1 = i
1

2
σ2θx + i

1

2
σ3ϕx e−iσ2θ (35)

which has non-vanishing diagonal elements. So we choose another gauge trans-
formation B which rotates AS around the three-axis by the angle of f . Thus we
get

Bx B−1 = i
1

2
σ3 fx + ei 1

2 σ3 f Ax A−1e−i 1
2 σ3 f (36)

and the diagonal elements of Bx B−1 vanish as long as i 1
2 fx + i 1

2ϕx cos θσ3 = 0.
This means that f can be determined if ϕ and cos θ are given explicitly. Now L is
transformed into

L ′ = −i
1

2
ζσ3 − i

1

2
ρ2ζ−1

( − S2
1 + S2

2 − S2
3

)
σ3 + U (37)
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where

U = Bx B−1 + ζ−1W1 (38)

the element has zeros on the diagonal.

7. CONSERVED QUANTITIES

Replacing L by L ′, from (28) one obtains

µ0 = 0, µ1 = −|u|2 − 1

2
w , . . . . (39)

In other words

µ1 = −|u|2 − 1

2
ρ2

( − S2
1 + S2

2 − S2
3

) = −|u|2 + 1

4
J1S2

1 + 1

4
J3S2

3 (40)

Here constant terms are neglected.
According to Tacktajan [?], 4|u|2 = Sax Sax . Therefore, (40) becomes

µ1 = −1

4

(
Sax Sax − J

(
S2

1 + S2
3

))
(41)

Because of

ln a(ζ ) = −
∫ ∞

−∞
dx{µ0 + µ1(iζ )−1 + · · ·}, (42)

we get

I0 = 0, I1 =
∫ ∞

−∞
dx

(
1

4
Sax Sax − 1

4
JS2

1 − 1

4
JS2

3

)
, (43)

Now I1 = 1
2 H follows from (4) and (43).

8. DISPERSION RELATION

In the inverse scattering transform a(ζ ) is independent of t , and the dispersion
relation is given by

ln a(ζ ) = 1

2iπ

∫ ∞

−∞
dζ ′ ln |a(ζ ′)|2

ζ ′ − ζ
(44)

so that

ln a(ζ ) =
∞∑
j=0

I j (iζ )− j as |ζ | → ∞ (45)

where I j are conserved quantities. From (26) and (45) one can see that H = 2I1

and I0 = 0.
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9. THE DISCRETE SPECTRUM

For simplicity we assume that a(ζ ) has only a pair of zeros. A standard
procedure yields

ad (ζ ) = ζ − ζ1

ζ − ζ̄1

ζ − ζ1′

ζ − ζ̄1′
, ζ1′ = ρ2ζ̄−1

1 (46)

where ζ1′ = ρ2ζ̄−1
1 from (23). When |ζ | → ∞, ad (ζ ) → 1. So we have

ln ad (ζ ) + (ζ̄1 − ζ1)ζ−1 + · · · + (ζ̄1′ − ζ1′ )ζ−1 + · · · (47)

The discrete part of Hamiltonian Hc is then

Hd = 2Id1 = −i2(ζ1 + ζ1′ − ζ̄1 − ζ̄1′ ) = −i4(κ1 − κ̄1) (48)

10. ACTION-ANGLE VARIABLES IN DISCRETE SPECTRUM

According to the inverse scattering transform ζn are independent of t and
bn(t) has a phase of the form −i4λnκnt . We assume that the action variables Pn

Pn = G(ζn) (49)

where G is a function to be determined. Let the angle variables Qn be

Qn = ln bn = ln |bn| + iarg bn (50)

The Lie–Poisson brackets containing bn can be derived as follows. Suppose a(ζ )
has a pair of zeros ζ1, ζ1′ , as in (46), and by setting ζ ′ = ζ1 in (16), we have

{a(ζ ), b1} = − κλ1 + κ1λ

1 + ρ2ζ−1ζ−1
1

1

ζ − ζ1
b1 + κλ1′ − κ1′λ

1 + ζ−1ζ1

1

ζ − ζ̄1′
b1 (51)

From (46) we obtain

{ln a(ζ ), b1} = −{ζ1, b1}
ζ − ζ1

− {ζ1′ , b1}
ζ − ζ1′

+ {ζ̄1, b1}
ζ − ζ̄1

+ {ζ̄1′ , b1}
ζ − ζ̄1′

(52)

Comparing (51) and (52) we find

{ζ1, b1} = κ1ζ1b1, {ζ̄1′ , b1} = κ1ζ̄1′b1, (53)

Therefore

{Hd , b1} = 2{ζ1 − ζ̄1′ , b1} = 4κ1λ1b1 (54)

From (49) and (50) we arrive at

P1 = G(ζ1), Q1 = ln b1 (55)

{P1, Q1} = G ′

b1
{ζ1, b1} = G ′

b1
κ1ζ1b1 = −1 (56)
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d

dζ1
G(ζ1) = −κ−1

1 ζ−1
1

G(ζ1) = −2
∫

dζ1
(
ζ 2

1 − ρ2)−1 = 2

ρ
Arth

ζ1

ρ
(57)

Similarly we obtain

G(ζ1′ ) = −2
∫

dζ1′
(
ζ 2

1′ − ρ2)−1 = 2

ρ
Arth

ζ1′

ρ

which when combined with (57) implies

Hd = −i2(1 − ρ)th
ρ

2
(G1 − G1′ ) + c.c. = −i2(ζ1 − ζ̄1′ + c.c. (58)

This is exactly equation (48). If a(ζ ) has many pairs of zeros the above expression
will involve more terms.

11. CONCLUDING REMARK

As ρ → 0, that is, when the anisotropy vanishes, it is obvious that (5) reduces
to the expression of L = −i

∑
a kSaσa for an isotropic spin chain (where k is the

spectral parameter). Similarly one can see that (16)–(18), (25) and (57) reduce to
the corresponding expressions for the isotropic spin chain.

In this paper, with the formal procedure we show the Hamiltonian formalism
of the Landau–Lifschitz equation for a spin chain with an easy plane. In deriving
the coordinate expression of conserved quantities, we first apply a gauge transfor-
mation to overcome technical difficulties.
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